Evaluation of solid oxide fuel cell anode based on active triple phase boundary length and tortuosity
Authors
Abstract:
An efficient procedure is presented for the evaluation of solid oxide fuel cell (SOFC) anode microstructure triple phase boundary length (TPBL). Triple phase boundary- the one that is common between three phases of the microstructure- has a great influence on the overall efficiency of SOFC because all electrochemical reactions of anode take place in its vicinity. Therefore, evaluation of TPBL for virtual or experimental 3D microstructures is essential for comparison purposes and the optimization processes. In this study, first, an algorithm is proposed to distinguish between percolated and non-percolated clusters for each of the phases. Then, another algorithm is used to determine the value of TPBL for all percolated clusters of three phases. Also, a procedure based on thermal and diffusion analogy is presented to assess the tortuosity of porous and solid phases. Finally for a virtual microstructure, percolated clusters, active and total TPBL and tortuosity are calculated and discussed.
similar resources
evaluation of solid oxide fuel cell anode based on active triple phase boundary length and tortuosity
an efficient procedure is presented for the evaluation of solid oxide fuel cell (sofc) anode microstructure triple phase boundary length (tpbl). triple phase boundary- the one that is common between three phases of the microstructure- has a great influence on the overall efficiency of sofc because all electrochemical reactions of anode take place in its vicinity. therefore, evaluation of tpbl f...
full textCeramic - Based Anode for Solid - Oxide Fuel Cell Utilizes
490 MRS BULLETIN/JULY 2002 nated by intergranular fracture, while in AJM it was in a manner resembling ductile behavior. Improved surface finishing by AJM resulted in a 15% improvement in flexural strength, compared with both ground and ground-plus-lapped samples. The researchers concluded that a higher compressive residual stress observed on the AJM-processed surface, combined with the smoothe...
full textTriple-phase boundary and power density enhancement in thin solid oxide fuel cells by controlled etching of the nickel anode
Fabrication of microporous structures for the anode of a thin film solid oxide fuel cell (SOFC(s)) using controlled etching process has led us to increased power density and increased cell robustness. Micropores were etched in the nickel anode by both wet and electrochemical etching processes. The samples etched electrochemically showed incomplete etching of the nickel leaving linked nickel isl...
full textReaxFF Reactive Force-Field Modeling of the Triple-Phase Boundary in a Solid Oxide Fuel Cell.
In our study, the Ni/YSZ ReaxFF reactive force field was developed by combining the YSZ and Ni/C/H descriptions. ReaxFF reactive molecular dynamics (RMD) were applied to model chemical reactions, diffusion, and other physicochemical processes at the fuel/Ni/YSZ interface. The ReaxFF RMD simulations were performed on the H2/Ni/YSZ and C4H10/Ni/YSZ triple-phase boundary (TPB) systems at 1250 and ...
full textstochastic geometry based model for total triple phase boundary length in omposite cathodes for solid oxide fuel cells
An analytical equation is derived for total triple phase boundary length per unit volume (LTPB) in an isotropic uniform random microstructure of LSM/YSZ composite cathode. The equation is applicable to YSZ and LSM particles of any convex shapes and size distributions. The equation explicitly relates LTPB to the shapes, mean sizes, coefficient of variation (a measure of the spread in a size dist...
full textMy Resources
Journal title
volume 4 issue 1
pages 11- 19
publication date 2016-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023